a_5+a_n = a_2+a_10$$a_{5}+a_{n}$$ = $$a_{2}+a_{10}$$
a_n = a_2+a_10-a_5$$a_{n}$$ = $$a_{2}+a_{10}-a_{5}$$
a_n = a_1+d+a_1+ d* 9-(a_1+ d* (5-1))$$a_{n}$$ = $$a_{1}+d+a_{1}+d\cdot 9-(a_{1}+d\cdot (5-1))$$
a_n = a_1+d+a_1+ d* 9-(a_1+ d* 4)$$a_{n}$$ = $$a_{1}+d+a_{1}+d\cdot 9-(a_{1}+d\cdot 4)$$
a_n = a_1+d+a_1+ d* 9-a_1- d* 4$$a_{n}$$ = $$a_{1}+d+a_{1}+d\cdot 9-a_{1}-d\cdot 4$$
a_n = a_1-a_1+d+a_1+ d* 9- d* 4$$a_{n}$$ = $$a_{1}-a_{1}+d+a_{1}+d\cdot 9-d\cdot 4$$
a_n = a_1-a_1+a_1+d+ d* 9- d* 4$$a_{n}$$ = $$a_{1}-a_{1}+a_{1}+d+d\cdot 9-d\cdot 4$$
a_n = a_1+0+d+ d* 9- d* 4$$a_{n}$$ = $$a_{1}+0+d+d\cdot 9-d\cdot 4$$
a_n = a_1+d+ d* 9- d* 4$$a_{n}$$ = $$a_{1}+d+d\cdot 9-d\cdot 4$$
a_n = a_1+ (7-1)* d$$a_{n}$$ = $$a_{1}+(7-1)\cdot d$$