14 uždavinys16 uždavinys
Išspręskite lygtį $$\sqrt {2-x} = x$$
Sprendimas.
saknis(
2-x) =
x
saknis(
2-x) = x$$\sqrt {2-x}$$ = $$x$$ 
(saknis(
2-x))^2 = x^2$$(\sqrt {2-x})^{2}$$ = $$x^{2}$$ 
2 = x^2+x$$2$$ = $$x^{2}+x$$

0 = x^2+x-2$$0$$ = $$x^{2}+x-2$$

x-1 = 0$$x-1$$ = $$0$$

x = 1$$x$$ = $$1$$

x+2 = 0$$x+2$$ = $$0$$

x = -2$$x$$ = $$-2$$

Gavome x = 1 ir x = - 2, bet pastaroji šaknis netinka, nes $$\sqrt {2-(-2)}$$ ≠ $$-2$$
Atsakymas: x = 1
14 uždavinys16 uždavinys