16 uždavinys18 uždavinys
Raskite vektoriaus $$\vec{c}$$ ilgį, jei $$\vec{c} = 2\cdot \vec{a}-3\cdot \vec{b}$$ ir $$\vec{a} = (0;\ \ \ \ 0.5)$$, $$\vec{b} = (-2;\ \ \ \ 3)$$
Sprendimas.
_c =
2* _a- 3* _b
_c = 2* _a- 3* _b$$\vec{c}$$ = $$2\cdot \vec{a}-3\cdot \vec{b}$$
_c = (6;1-9)$$\vec{c}$$ = $$(6;\ \ \ \ 1-9)$$
$$\vec{c}$$ = $$2\cdot \vec{a}-3\cdot \vec{b}$$
$$\vec{c}$$ = $$2\cdot (0;\ \ \ \ 0.5)-3\cdot (-2;\ \ \ \ 3)$$
$$\vec{c}$$ = $$(0;\ \ \ \ 1)-(-6;\ \ \ \ 9)$$
$$\vec{c}$$ = $$(0+6;\ \ \ \ 1-9)$$
$$\vec{c}$$ = $$(6;\ \ \ \ -8)$$
Vektoriaus ilgis $$\sqrt {6^{2}+(-8)^{2}} = \sqrt {36+64} = \sqrt {100} = 10$$
Atsakymas: 10
16 uždavinys18 uždavinys