22 uždavinys24 uždavinys
Figūra yra ribojama parabolės y = x2 + 1 ir tiesės y = ax + 1; čia a > 0. Su kuria a reikšme šios figūros plotas lygus 36 ?
Sprendimas:
Randame grafikų susikirtimo taškus:
x^2+1 =
a* x+1
x^2+1 = a* x+1$$x^{2}+1$$ = $$a\cdot x+1$$
x^2- a* x+1 = 1$$x^{2}-a\cdot x+1$$ = $$1$$
x^2- a* x-1+1 = 0$$x^{2}-a\cdot x-1+1$$ = $$0$$
x^2- a* x+0 = 0$$x^{2}-a\cdot x+0$$ = $$0$$
x^2- a* x = 0$$x^{2}-a\cdot x$$ = $$0$$
x = 0$$x$$ = $$0$$
x-a = 0$$x-a$$ = $$0$$
x = 0+a$$x$$ = $$0+a$$
x = a$$x$$ = $$a$$
Grafikai kertasi taškuose x = 0 ir x = a.
Norint rasti figūros plotą, reikia rasti tiesės ir parabolės skirtumo integralą nuo 0 iki a.
∫(0;a; a* x+1-( x^2+1)) =
36
∫(0;a; a* x+1-( x^2+1)) = 36$$\int_{0}^{a} (a\cdot x+1-(x^{2}+1))$$ = $$36$$
∫(0;a; a* x+1- x^2-1) = 36$$\int_{0}^{a} (a\cdot x+1-x^{2}-1)$$ = $$36$$
∫(0;a; a* x- x^2+1-1) = 36$$\int_{0}^{a} (a\cdot x-x^{2}+1-1)$$ = $$36$$
∫(0;a; a* x- x^2+0) = 36$$\int_{0}^{a} (a\cdot x-x^{2}+0)$$ = $$36$$
∫(0;a; a* x- x^2) = 36$$\int_{0}^{a} (a\cdot x-x^{2})$$ = $$36$$
( * a^2- * a^3) = 36$$(\frac{a}{2}\cdot a^{2}-\frac{1}{3}\cdot a^{3})$$ = $$36$$ ( - * a^3) = 36$$(\frac{a^{3}}{2}-\frac{1}{3}\cdot a^{3})$$ = $$36$$ ( - ) = 36$$(\frac{a^{3}}{2}-\frac{a^{3}}{3})$$ = $$36$$ - = 36$$\frac{a^{3}}{2}-\frac{a^{3}}{3}$$ = $$36$$ = 36$$\frac{a^{3}}{6}$$ = $$36$$ = 6* 6$$\frac{a^{3}}{6}$$ = $$6\cdot 6$$ a^3 = 6* 6* 6$$a^{3}$$ = $$6\cdot 6\cdot 6$$
a = saknis(3, 6* 6* 6)$$a$$ = $$\sqrt[3]{6\cdot 6\cdot 6}$$ a = 6$$a$$ = $$6$$
Atsakymas: a = 6
22 uždavinys24 uždavinys