Sprendimas:
$$log_{5}(x-7) = 0$$
$$log_{5}(x-7) = log_{5}(5^{0})$$
$$log_{5}(x-7) = log_{5}(1)$$
$$x-7 = 1$$
$$x = 8$$
x = 8 patenka į apibrėžimo sritį.
Atsakymas: x = 8
-------------------------------------------------------------------------
Sprendimas:
$$sin(x)+sin(2\cdot x) = 0$$
$$sin(x)+2\cdot sin(x)\cdot cos(x) = 0$$
$$sin(x)\cdot (1+2\cdot cos(x)) = 0$$
---------------------------
$$sin(x) = 0$$
$$x = \pi\cdot k$$
---------------------------
$$1+2\cdot cos(x) = 0$$
$$2\cdot cos(x) = -1$$
$$cos(x) = -\frac{1}{2}$$
$$x = \frac{2\cdot \pi}{3}+2\cdot \pi\cdot k$$
$$x = -\frac{2\cdot \pi}{3}+2\cdot \pi\cdot k$$
Atsakymas: $$x = \pi\cdot k$$ ir $$x = \frac{2\cdot \pi}{3}+2\cdot \pi\cdot k$$ bei $$x = -\frac{2\cdot \pi}{3}+2\cdot \pi\cdot k$$