$$(3\cdot \vec{a}-2\cdot \vec{b})\cdot (\vec{a}+2\cdot \vec{b})$$ = $$$$
$$(3\cdot \vec{a}\cdot \vec{a}+3\cdot \vec{a}\cdot 2\cdot \vec{b}-2\cdot \vec{b}\cdot \vec{a}-2\cdot \vec{b}\cdot 2\cdot \vec{b})$$ = $$$$
$$(3\cdot \vec{a}^{2}+6\cdot \vec{a}\cdot \vec{b}-2\cdot \vec{a}\cdot \vec{b}-4\cdot \vec{b}^{2})$$ = $$$$
$$3\cdot \vec{a}^{2}+4\cdot \vec{a}\cdot \vec{b}-4\cdot \vec{b}^{2}$$ = $$$$
$$3\cdot \vec{a}^{2}+4\cdot |\vec{a}|\cdot |\vec{b}|\cdot cos(\alpha)-4\cdot \vec{b}^{2}$$ = $$$$
$$3\cdot 3^{2}+4\cdot 3\cdot 4\cdot cos(120)-4\cdot 4^{2}$$ = $$$$
$$27+48\cdot cos(120)-4\cdot 4^{2}$$ = $$$$
$$27-\frac{48\cdot 1}{2}-4\cdot 4^{2}$$ = $$$$