PdHHE

Išspręskite lygtį $$sin(x)\cdot ctg(x) = 1$$

Sprendimas.

 sin(x)* ctg(x)  = 
1
 sin(x)* ctg(x) = 1$$sin(x)\cdot ctg(x)$$ = $$1$$
$${\normalsize ctg(x)}$$ = $${\normalsize \frac{cos(x)}{sin(x)}}$$
 
 sin(x)* cos(x)
/ sin(x)
 = 1$$\frac{sin(x)\cdot cos(x)}{sin(x)}$$ = $$1$$
$${\normalsize \frac{sin(x)\cdot cos(x)}{sin(x)}}$$ = $${\normalsize cos(x)}$$
cos(x) = 1$$cos(x)$$ = $$1$$
arccos(cos(x)) = arccos(1)$$arccos(cos(x))$$ = $$arccos(1)$$
$${\normalsize arccos(cos(x))}$$ = $${\normalsize x}$$
x = arccos(1)$$x$$ = $$arccos(1)$$
$${\normalsize arccos(1)}$$ = $$0$$
x = 0$$x$$ = $$0$$
$$sin(x)\cdot ctg(x)$$  = $$1$$
$$\frac{sin(x)\cdot cos(x)}{sin(x)}$$  = $$1$$
$$cos(x)$$  = $$1$$
$$x$$  = $$0$$

gavome x = 0.

Kadangi $$ctg(x) = \frac{cos(x)}{sin(x)}$$,

esantis vardiklyje sin(x) negali būti lygus 0

sin(x) ≠ 0,

x ≠ 0.

Atsakymas: sprendinių nėra