23 uždavinys

22 uždavinys24 uždavinys

Taškas C priklauso pusapskritimiui su centru O.  AB ⊥ CD, AD = 4, DB = 9. Apskaičiuokite atkarpos CD ilgį.

Sprendimas.

AB = AD + DB = 4 + 9 = 13.

AO = AB / 2 = 6.5

OC = AO = 6.5.

DO = AO - AD = 6.5 - 4 = 2.5.

Pagal pitagoro teoremą OC2=DO2+CD2OC^{2} = DO^{2}+CD^{2}.

CD=OC2DO2CD = \sqrt {OC^{2}-DO^{2}}

saknis( 6.5^2- 2.5^2)  = 
saknis( 6.5^2- 2.5^2) = 6.522.52\sqrt {6.5^{2}-2.5^{2}} = 
6.52{\normalsize 6.5^{2}} = 42.25{\normalsize 42.25}
saknis(42.25- 2.5^2) = 42.252.52\sqrt {42.25-2.5^{2}} = 
2.52{\normalsize 2.5^{2}} = 6.25{\normalsize 6.25}
saknis(42.25-6.25) = 42.256.25\sqrt {42.25-6.25} = 
42.256.25{\normalsize 42.25-6.25} = 36{\normalsize 36}
saknis(36) = 36\sqrt {36} = 
36{\normalsize \sqrt {36}} = 6{\normalsize 6}
666
6.522.52\sqrt {6.5^{2}-2.5^{2}}  = 
42.256.25\sqrt {42.25-6.25}  = 
36\sqrt {36}  = 
66

Atsakymas: 6

22 uždavinys24 uždavinys