23 uždavinys

22 uždavinys24 uždavinys

Taškas C priklauso pusapskritimiui su centru O.  AB ⊥ CD, AD = 4, DB = 9. Apskaičiuokite atkarpos CD ilgį.

Sprendimas.

AB = AD + DB = 4 + 9 = 13.

AO = AB / 2 = 6.5

OC = AO = 6.5.

DO = AO - AD = 6.5 - 4 = 2.5.

Pagal pitagoro teoremą $$OC^{2} = DO^{2}+CD^{2}$$.

$$CD = \sqrt {OC^{2}-DO^{2}}$$

saknis( 6.5^2- 2.5^2)  = 
saknis( 6.5^2- 2.5^2) = $$\sqrt {6.5^{2}-2.5^{2}}$$ = 
$${\normalsize 6.5^{2}}$$ = $${\normalsize 42.25}$$
saknis(42.25- 2.5^2) = $$\sqrt {42.25-2.5^{2}}$$ = 
$${\normalsize 2.5^{2}}$$ = $${\normalsize 6.25}$$
saknis(42.25-6.25) = $$\sqrt {42.25-6.25}$$ = 
$${\normalsize 42.25-6.25}$$ = $${\normalsize 36}$$
saknis(36) = $$\sqrt {36}$$ = 
$${\normalsize \sqrt {36}}$$ = $${\normalsize 6}$$
6$$6$$
$$\sqrt {6.5^{2}-2.5^{2}}$$  = $$$$
$$\sqrt {42.25-6.25}$$  = $$$$
$$\sqrt {36}$$  = $$$$
$$6$$ $$$$

Atsakymas: 6

22 uždavinys24 uždavinys