9^(x+1) = 3^(4*x-2)$$9^{(x+1)}$$ = $$3^{(4*x-2)}$$
3^(2*(x+1)) = 3^(4*x-2)$$3^{(2*(x+1))}$$ = $$3^{(4*x-2)}$$
log(3, 3^(2*(x+1))) = log(3, 3^(4*x-2))$$log_{3}(3^{(2*(x+1))})$$ = $$log_{3}(3^{(4*x-2)})$$
( 2* (x+1)) = log(3, 3^(4*x-2))$$(2\cdot (x+1))$$ = $$log_{3}(3^{(4*x-2)})$$
( 2* (x+1)) = ( 4* x-2)$$(2\cdot (x+1))$$ = $$(4\cdot x-2)$$
2* (x+1) = ( 4* x-2)$$2\cdot (x+1)$$ = $$(4\cdot x-2)$$
2* (x+1) = 4* x-2$$2\cdot (x+1)$$ = $$4\cdot x-2$$
2* x+ 2* 1 = 4* x-2$$2\cdot x+2\cdot 1$$ = $$4\cdot x-2$$
2* 1 = 4* x- 2* x-2$$2\cdot 1$$ = $$4\cdot x-2\cdot x-2$$
2* 1+2 = 4* x- 2* x$$2\cdot 1+2$$ = $$4\cdot x-2\cdot x$$
4 = 4* x- 2* x$$4$$ = $$4\cdot x-2\cdot x$$
4 = 2* x$$4$$ = $$2\cdot x$$
= x$$\frac{4}{2}$$ = $$x$$ 2 = x$$2$$ = $$x$$