28 uždavinys

27 uždavinys29 uždavinys

Raskite didžiausią funkcijos f(x) = $$\frac{1}{2}\cdot cos(2\cdot x)+sin(x)$$ reikšmę intervale [0; $$\frac{\pi}{2}$$]

Sprendimas.

Randame funkcijos f(x) išvestinę.

 ( 
 1
/ 2
* cos( 2* x)
+sin(x)
)
  = 
 ( 
 1
/ 2
* cos( 2* x)
+sin(x)
)
 = $$(\frac{1}{2}\cdot cos(2\cdot x)+sin(x))'$$ = 
$${\normalsize (\frac{1}{2}\cdot cos(2\cdot x)+sin(x))'}$$ = $${\normalsize (\frac{1}{2}\cdot cos(2\cdot x))'+sin(x)'}$$
Paaiškinimas:
Sumos išvestinė (f+g)′ = f′ + g′
 ( 
 1
/ 2
* cos( 2* x)
)
+ sin(x)
 = $$(\frac{1}{2}\cdot cos(2\cdot x))'+sin(x)'$$ = 
$${\normalsize \frac{1}{2}\cdot cos(2\cdot x)}$$ = $${\normalsize \frac{1}{2}\cdot cos(2\cdot x)'}$$
Paaiškinimas:
1/2 iškeltas prieš skliaustus
 
 1
/ 2
* cos( 2* x)
+ sin(x)
 = $$\frac{1}{2}\cdot cos(2\cdot x)'+sin(x)'$$ = 
$${\normalsize cos(2\cdot x)'}$$ = $${\normalsize sin(2\cdot x)\cdot (2\cdot x)'}$$
Paaiškinimas:
cos(x) išvestinė yra sin(x)
Kompozicijos g(f(x)) išvestinė yra g(y)*f(x) f(x) = (2*x)′
- 
 1
/ 2
* sin( 2* x)* ( 2* x)
+ sin(x)
 = $$-\frac{1}{2}\cdot sin(2\cdot x)\cdot (2\cdot x)'+sin(x)'$$ = 
$${\normalsize (2\cdot x)'}$$ = $${\normalsize 2}$$
Paaiškinimas:
x išvestinė yra 1
- 
 1
/ 2
* sin( 2* x)* 2
+ sin(x)
 = $$-\frac{1}{2}\cdot sin(2\cdot x)\cdot 2+sin(x)'$$ = 
$${\normalsize \frac{1}{2}\cdot sin(2\cdot x)\cdot 2}$$ = $${\normalsize sin(2\cdot x)}$$
-sin( 2* x)+ sin(x) = $$-sin(2\cdot x)+sin(x)'$$ = 
$${\normalsize sin(x)'}$$ = $${\normalsize cos(x)}$$
Paaiškinimas:
sin(x) išvestinė yra cos(x)
-sin( 2* x)+cos(x) = $$-sin(2\cdot x)+cos(x)$$ = 
$${\normalsize sin(2\cdot x)}$$ = $${\normalsize (2\cdot sin(x)\cdot cos(x))}$$
Paaiškinimas:
Sinuso argumento žeminimo formulė $${\normalsize sin(2\cdot a) = 2\cdot sin(a)\cdot cos(a)}$$
-( 2* sin(x)* cos(x))+cos(x) = $$-(2\cdot sin(x)\cdot cos(x))+cos(x)$$ = 
$${\normalsize -(2\cdot sin(x)\cdot cos(x))}$$ = $${\normalsize -2\cdot sin(x)\cdot cos(x)}$$
- 2* sin(x)* cos(x)+cos(x) = $$-2\cdot sin(x)\cdot cos(x)+cos(x)$$ = 
$${\normalsize -2\cdot sin(x)\cdot cos(x)+cos(x)}$$ = $${\normalsize -cos(x)\cdot (2\cdot sin(x)-1)}$$
Paaiškinimas:
cos(x) iškeltas prieš skliaustus
- cos(x)* ( 2* sin(x)-1)$$-cos(x)\cdot (2\cdot sin(x)-1)$$
$$(\frac{1}{2}\cdot cos(2\cdot x)+sin(x))'$$  = $$$$
$$\frac{1}{2}\cdot cos(2\cdot x)'+sin(x)'$$  = $$$$
$$-\frac{1}{2}\cdot sin(2\cdot x)\cdot (2\cdot x)'+sin(x)'$$  = $$$$
$$-\frac{1}{2}\cdot sin(2\cdot x)\cdot 2+sin(x)'$$  = $$$$
$$-sin(2\cdot x)+sin(x)'$$  = $$$$
$$-sin(2\cdot x)+cos(x)$$  = $$$$
$$-(2\cdot sin(x)\cdot cos(x))+cos(x)$$  = $$$$
$$-cos(x)\cdot (2\cdot sin(x)-1)$$ $$$$

Norint rasti ekstremumus (didžiausias/mažiausias reikšmes), išvestinę $$-cos(x)\cdot (2\cdot sin(x)-1)$$ reikia prilyginti nuliui.

Gauname $$cos(x) = 0$$ (1)

ir $$2\cdot sin(x)-1 = 0$$ (2)

Iš (1) lygties gauname x = $$\frac{\pi}{2}$$

Iš (2) lygties gauname $$sin(x) = \frac{1}{2}$$,

x = $$\frac{\pi}{6}$$

Apskaičiuojame funkcijos f(x) reikšmes rastuose ektremumo taškuose x = $$\frac{\pi}{2}$$ ir x = $$\frac{\pi}{6}$$ bei pradiniame intervalo taške x = 0.

Kai x = 0:

 
 1
/ 2
* cos( 2* x)
+sin(x)
  = 
 
 1
/ 2
* cos( 2* x)
+sin(x)
 = $$\frac{1}{2}\cdot cos(2\cdot x)+sin(x)$$ = 
Paaiškinimas:
Keitimas $${\normalsize x}$$ = $$0$$.
 
 1
/ 2
* cos( 2* 0)
+sin(0)
 = $$\frac{1}{2}\cdot cos(2\cdot 0)+sin(0)$$ = 
$${\normalsize 2\cdot 0}$$ = $$0$$
 
 1
/ 2
* cos(0)
+sin(0)
 = $$\frac{1}{2}\cdot cos(0)+sin(0)$$ = 
$${\normalsize sin(0)}$$ = $$0$$
 
 1
/ 2
* cos(0)
+0
 = $$\frac{1}{2}\cdot cos(0)+0$$ = 
 
 1
/ 2
* cos(0)
 = $$\frac{1}{2}\cdot cos(0)$$ = 
$${\normalsize cos(0)}$$ = $${\normalsize 1}$$
 
 1
/ 2
* 1
 = $$\frac{1}{2}\cdot 1$$ = 
$${\normalsize \frac{1}{2}\cdot 1}$$ = $${\normalsize \frac{1}{2}}$$
 
 1
/ 2
$$\frac{1}{2}$$
$$\frac{1}{2}\cdot cos(2\cdot 0)+sin(0)$$  = $$$$
$$\frac{1}{2}\cdot cos(0)$$  = $$$$
$$\frac{1}{2}\cdot 1$$  = $$$$
$$\frac{1}{2}$$ $$$$

Kai x = $$\frac{\pi}{2}$$

 
 1
/ 2
* cos( 2* x)
+sin(x)
  = 
 
 1
/ 2
* cos( 2* x)
+sin(x)
 = $$\frac{1}{2}\cdot cos(2\cdot x)+sin(x)$$ = 
Paaiškinimas:
Keitimas $${\normalsize x}$$ = $${\normalsize \frac{\pi}{2}}$$.
 
 1
/ 2
* cos( 
 2* π
/ 2
)
+sin( 
 π
/ 2
)
 = $$\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{2})+sin(\frac{\pi}{2})$$ = 
$${\normalsize \frac{2\cdot \pi}{2}}$$ = $${\normalsize \pi}$$
 
 1
/ 2
* cos(π)
+sin( 
 π
/ 2
)
 = $$\frac{1}{2}\cdot cos(\pi)+sin(\frac{\pi}{2})$$ = 
$${\normalsize cos(\pi)}$$ = $${\normalsize -1}$$
- 
 1
/ 2
* 1
+sin( 
 π
/ 2
)
 = $$-\frac{1}{2}\cdot 1+sin(\frac{\pi}{2})$$ = 
$${\normalsize \frac{1}{2}\cdot 1}$$ = $${\normalsize \frac{1}{2}}$$
- 
 1
/ 2
+sin( 
 π
/ 2
)
 = $$-\frac{1}{2}+sin(\frac{\pi}{2})$$ = 
$${\normalsize sin(\frac{\pi}{2})}$$ = $${\normalsize 1}$$
- 
 1
/ 2
+1
 = $$-\frac{1}{2}+1$$ = 
$${\normalsize -\frac{1}{2}+1}$$ = $${\normalsize \frac{1}{2}}$$
 
 1
/ 2
$$\frac{1}{2}$$
$$\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{2})+sin(\frac{\pi}{2})$$  = $$$$
$$\frac{1}{2}\cdot cos(\pi)+sin(\frac{\pi}{2})$$  = $$$$
$$-\frac{1}{2}+sin(\frac{\pi}{2})$$  = $$$$
$$-\frac{1}{2}+1$$  = $$$$
$$\frac{1}{2}$$ $$$$

Kai x =  $$\frac{\pi}{6}$$

 
 1
/ 2
* cos( 2* x)
+sin(x)
  = 
 
 1
/ 2
* cos( 2* x)
+sin(x)
 = $$\frac{1}{2}\cdot cos(2\cdot x)+sin(x)$$ = 
Paaiškinimas:
Keitimas $${\normalsize x}$$ = $${\normalsize \frac{\pi}{6}}$$.
 
 1
/ 2
* cos( 
 2* π
/ 6
)
+sin( 
 π
/ 6
)
 = $$\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{6})+sin(\frac{\pi}{6})$$ = 
$${\normalsize \frac{2\cdot \pi}{6}}$$ = $${\normalsize \frac{\pi}{3}}$$
 
 1
/ 2
* cos( 
 π
/ 3
)
+sin( 
 π
/ 6
)
 = $$\frac{1}{2}\cdot cos(\frac{\pi}{3})+sin(\frac{\pi}{6})$$ = 
$${\normalsize cos(\frac{\pi}{3})}$$ = $${\normalsize \frac{1}{2}}$$
 
 1
/ 2
* 
 1
/ 2
+sin( 
 π
/ 6
)
 = $$\frac{1}{2}\cdot \frac{1}{2}+sin(\frac{\pi}{6})$$ = 
$${\normalsize \frac{1}{2}\cdot \frac{1}{2}}$$ = $${\normalsize \frac{1}{4}}$$
 
 1
/ 4
+sin( 
 π
/ 6
)
 = $$\frac{1}{4}+sin(\frac{\pi}{6})$$ = 
$${\normalsize sin(\frac{\pi}{6})}$$ = $${\normalsize \frac{1}{2}}$$
 
 1
/ 4
+ 
 1
/ 2
 = $$\frac{1}{4}+\frac{1}{2}$$ = 
$${\normalsize \frac{1}{4}+\frac{1}{2}}$$ = $${\normalsize \frac{3}{4}}$$
 
 3
/ 4
$$\frac{3}{4}$$
$$\frac{1}{2}\cdot cos(\frac{2\cdot \pi}{6})+sin(\frac{\pi}{6})$$  = $$$$
$$\frac{1}{2}\cdot cos(\frac{\pi}{3})+sin(\frac{\pi}{6})$$  = $$$$
$$\frac{1}{2}\cdot \frac{1}{2}+sin(\frac{\pi}{6})$$  = $$$$
$$\frac{1}{4}+sin(\frac{\pi}{6})$$  = $$$$
$$\frac{1}{4}+\frac{1}{2}$$  = $$$$
$$\frac{3}{4}$$ $$$$

Pati didžiausia reikšmė $$\frac{3}{4}$$

Atsakymas: $$\frac{3}{4}$$

27 uždavinys29 uždavinys