17 uždavinys19 uždavinys
Duota funkcija f (x) = 3x2 + 5x4 - cos(πx).
1. Apskaičiuokite f ' (0).
Sprendimas:
Randame f(x) išvestinę ir į ją įstatome x = 0
( 3* x^2+ 5* x^4-cos( π
* x))′ =
( 3* x^2+ 5* x^4-cos( π
* x))′ = $$(3\cdot x^{2}+5\cdot x^{4}-cos(\pi\cdot x))'$$ = 
sin(0)* π
= $$sin(0)\cdot \pi$$ = 
0* π
= $$0\cdot \pi$$ = 
0$$0$$

Atsakymas: 0
2. Nustatykite, kokia funkcija yra f ' (x) : lyginė, nelyginė ar nei lyginė, nei nelyginė. Atsakymą pagrįskite.
Sprendimas:
Randame, kam lygi f ' ( - x):
6* x+ 20* x^3+ sin( π
* x)* π
=
Matome, kad f ' ( - x) = - f ' (x), todėl funkcija f ' (x) yra nelyginė.
Atsakymas: nelyginė
3. Apskaičiuokite $$f(2)+\int_{0}^{1} (f(x)\cdot d\cdot x)$$.
Sprendimas:
Randame f (2):
3* x^2+ 5* x^4-cos( π
* x) =
3* x^2+ 5* x^4-cos( π
* x) = $$3\cdot x^{2}+5\cdot x^{4}-cos(\pi\cdot x)$$ = 
12+ 5* 2^4-cos( π
* 2) = $$12+5\cdot 2^{4}-cos(\pi\cdot 2)$$ = 
12+80-cos( π
* 2) = $$12+80-cos(\pi\cdot 2)$$ = 
92-cos( π
* 2) = $$92-cos(\pi\cdot 2)$$ = 
92-1 = $$92-1$$ =

91$$91$$

$$3\cdot 2^{2}+5\cdot 2^{4}-cos(\pi\cdot 2)$$ = $$$$
$$12+80-cos(\pi\cdot 2)$$ = $$$$
$$92-cos(\pi\cdot 2)$$ = $$$$

Randame $$\int_{0}^{1} (f(x)\cdot d\cdot x)$$
∫(0;1; 3* x^2+ 5* x^4-cos( π
* x)) =
∫(0;1; 3* x^2+ 5* x^4-cos( π
* x)) = $$\int_{0}^{1} (3\cdot x^{2}+5\cdot x^{4}-cos(\pi\cdot x))$$ = 
( 1^3+ 1^5)-( 0^3+ 0^5- sin( π * 0) |
|
/ π |
) = $$(1^{3}+1^{5})-(0^{3}+0^{5}-\frac{sin(\pi\cdot 0)}{\pi})$$ = 
( 1^3+ 1^5)-( 0^5- sin( π * 0) |
|
/ π |
) = $$(1^{3}+1^{5})-(0^{5}-\frac{sin(\pi\cdot 0)}{\pi})$$ = 
( 1^3+ 1^5)-(- sin( π * 0) |
|
/ π |
) = $$(1^{3}+1^{5})-(-\frac{sin(\pi\cdot 0)}{\pi})$$ = 
( 1^3+ 1^5)-() = $$(1^{3}+1^{5})-()$$ =

( 1^3+ 1^5) = $$(1^{3}+1^{5})$$ =

2$$2$$

$$\int_{0}^{1} (3\cdot x^{2}+5\cdot x^{4}-cos(\pi\cdot x))$$ = $$$$
$$(x^{3}+x^{5}-\frac{sin(\pi\cdot x)}{\pi}){\LARGE |}_{0}^{1}$$ = $$$$
$$(1^{3}+1^{5}-\frac{sin(\pi\cdot 1)}{\pi})-(0^{3}+0^{5}-\frac{sin(\pi\cdot 0)}{\pi})$$ = $$$$
∫(0;1;3*x^2+5*x^4-cos(π*x)) =
|(0;1;x^3+x^5-sin(π*x)/π) =
(1^3+1^5-sin(π*1)/π)-(0^3+0^5-sin(π*0)/π) =

$$f(2)+\int_{0}^{1} (f(x)\cdot d\cdot x) = 91+2 = 93$$
Atsakymas: 93
17 uždavinys19 uždavinys