23 uždavinys25 uždavinys
Sprendimas:
Kūgio pagrindo spindulys r, sudaromoji L = 6.
$$\frac{r}{L} = cos(a)$$
$$r = cos(a)\cdot L = 6\cdot cos(a)$$ (1)
kai $$a = \frac{\pi}{3}$$
$$r = 6\cdot cos(\frac{\pi}{3}) = \frac{1}{2}\cdot 6 = 3$$
Šoninio paviršiaus plotas $$\pi\cdot r\cdot L = \pi\cdot 3\cdot 6 = 18\cdot \pi$$
Atsakymas: 18π
Sprendimas:
Kūgio aukštinė h.
$$\frac{h}{L} = sin(a)$$
$$h = sin(a)\cdot L = sin(a)\cdot 6 = 6\cdot sin(a)$$ (2)
Kūgio tūrio formulė $$V = \frac{1}{3}\cdot \pi\cdot r^{2}\cdot h$$
Į ją statome (1) ir (2) gautas išraiškas:
* π* r^2* h =
Sprendimas:
Tūrio išvestinę prilyginame nuliui:
( 72* π* (sin(a)- sin(a)^3))′ =
0
( 72* π* (sin(a)- sin(a)^3))′ = 0$$(72\cdot \pi\cdot (sin(a)-sin(a)^{3}))'$$ = $$0$$ 72* π* (sin(a)- sin(a)^3)′ = 0$$72\cdot \pi\cdot (sin(a)-sin(a)^{3})'$$ = $$0$$ π* (cos(a)- 3* sin(a)^2* cos(a)) = 0$$\pi\cdot (cos(a)-3\cdot sin(a)^{2}\cdot cos(a))$$ = $$0$$ (cos(a)- 3* sin(a)^2* cos(a)) = 0$$(cos(a)-3\cdot sin(a)^{2}\cdot cos(a))$$ = $$0$$
cos(a)- 3* sin(a)^2* cos(a) = 0$$cos(a)-3\cdot sin(a)^{2}\cdot cos(a)$$ = $$0$$
cos(a) = 0$$cos(a)$$ = $$0$$
arccos(cos(a)) = arccos(0)$$arccos(cos(a))$$ = $$arccos(0)$$
a = arccos(0)$$a$$ = $$arccos(0)$$
a = π |
|
/ 2 |
+ π* k$$a$$ = $$\frac{\pi}{2}+\pi\cdot k$$ 1- 3* sin(a)^2 = 0$$1-3\cdot sin(a)^{2}$$ = $$0$$
1 = 3* sin(a)^2+0$$1$$ = $$3\cdot sin(a)^{2}+0$$
1 = 3* sin(a)^2$$1$$ = $$3\cdot sin(a)^{2}$$
= sin(a)^2$$\frac{1}{3}$$ = $$sin(a)^{2}$$ saknis( ) = sin(a)$$\sqrt {\frac{1}{3}}$$ = $$sin(a)$$ 1 |
|
/ saknis(3) |
= sin(a)$$\frac{1}{\sqrt {3}}$$ = $$sin(a)$$
$$\frac{1}{\sqrt {3}} = \frac{\sqrt {3}}{3}$$
Sprendimas:
72* π* (sin(a)- sin(a)^3) =
Atsakymas: $$16\cdot \sqrt {3}\cdot \pi$$
23 uždavinys25 uždavinys