19 uždavinys21 uždavinys
Ant kubo ABCDA1B1C1D1 kraštinės CC1 atidėtas taškas E taip, kad atkarpa EC1 yra 2 kartus ilgesnė už atkarpą EC.
Raskite kampą tarp tiesių, einančių per BE ir AC1.

Sprendimas:
Tarkime, kubo kraštinė lygi 1.
$$AC_{1}^{2} = 1^{2}+1^{2}+1^{2} = 3$$

Pažymime tašką F analogišką taškui E, t.y. FD = $$\frac{1}{3}\cdot DD_{1}$$.
Ieškomas kampas lygus ∠FAC1, nes, AF || BE
Pagal Pitagoro teoremą
$$AF^{2} = 1^{2}+(\frac{1}{3})^{2} = 1+\frac{1}{9} = \frac{10}{9}$$
$$FC_{1}^{2} = 1^{2}+(\frac{2}{3})^{2} = 1+\frac{4}{9} = \frac{13}{9}$$
Pagal kosinusų teoremą
$$FC_{1}^{2} = AF^{2}+AC_{1}^{2}-2\cdot AF\cdot AC_{1}\cdot cos(A)$$
2* saknis( 30) |
|
/ 3 |
* cos(A) = - +3$$\frac{2\cdot \sqrt {30}}{3}\cdot cos(A)$$ = $$\frac{10}{9}-\frac{13}{9}+3$$ 
2* saknis( 30) |
|
/ 3 |
* cos(A) = - +3$$\frac{2\cdot \sqrt {30}}{3}\cdot cos(A)$$ = $$-\frac{1}{3}+3$$ 
2* saknis( 30) |
|
/ 3 |
* cos(A) = $$\frac{2\cdot \sqrt {30}}{3}\cdot cos(A)$$ = $$\frac{8}{3}$$ 
saknis( 30) |
|
/ 3 |
* cos(A) = $$\frac{\sqrt {30}}{3}\cdot cos(A)$$ = $$\frac{8}{3\cdot 2}$$ 
saknis( 30) |
|
/ 3 |
* cos(A) = $$\frac{\sqrt {30}}{3}\cdot cos(A)$$ = $$\frac{8}{6}$$ 
cos(A)* saknis( 30) |
|
/ 3 |
= $$\frac{cos(A)\cdot \sqrt {30}}{3}$$ = $$\frac{8}{6}$$ 
cos(A)* saknis(
30) = $$cos(A)\cdot \sqrt {30}$$ = $$\frac{8\cdot 3}{6}$$ 
cos(A) = 8* 3 |
|
/ 6/ saknis( 30) |
$$cos(A)$$ = $$\frac{8\cdot 3}{6\cdot \sqrt {30}}$$ 
cos(A) = 4 |
|
/ saknis( 30) |
$$cos(A)$$ = $$\frac{4}{\sqrt {30}}$$ 
cos(A) = $$cos(A)$$ = $$\frac{4\cdot \sqrt {30}}{\sqrt {30}\cdot \sqrt {30}}$$ 
cos(A) = 4* saknis( 30) |
|
/ 30 |
$$cos(A)$$ = $$\frac{4\cdot \sqrt {30}}{30}$$ 
cos(A) = 2* saknis( 30) |
|
/ 15 |
$$cos(A)$$ = $$\frac{2\cdot \sqrt {30}}{15}$$ 
arccos(cos(A)) = arccos( 2* saknis( 30) |
|
/ 15 |
)$$arccos(cos(A))$$ = $$arccos(\frac{2\cdot \sqrt {30}}{15})$$ 
A = arccos( 2* saknis( 30) |
|
/ 15 |
)$$A$$ = $$arccos(\frac{2\cdot \sqrt {30}}{15})$$ 
$$\frac{13}{9}$$ = $$\frac{10}{9}+3-2\cdot \sqrt {\frac{10}{9}}\cdot \sqrt {3}\cdot cos(A)$$
$$2\cdot \sqrt {\frac{10}{9}}\cdot \sqrt {3}\cdot cos(A)$$ = $$\frac{10}{9}-\frac{13}{9}+3$$
$$\frac{2\cdot \sqrt {30}}{3}\cdot cos(A)$$ = $$\frac{8}{3}$$
$$\frac{cos(A)\cdot \sqrt {30}}{3}$$ = $$\frac{8}{6}$$
$$cos(A)$$ = $$\frac{4}{\sqrt {30}}$$
$$cos(A)$$ = $$\frac{4\cdot \sqrt {30}}{30}$$
$$cos(A)$$ = $$\frac{2\cdot \sqrt {30}}{15}$$
$$A$$ = $$arccos(\frac{2\cdot \sqrt {30}}{15})$$
13/9 = 10/9+3-2*saknis(10/9)*saknis(3)*cos(A)
2*saknis(10/9)*saknis(3)*cos(A) = 10/9-13/9+3
2*saknis(30)/3*cos(A) = 8/3
cos(A)*saknis(30)/3 = 8/6
A = arccos(2*saknis(30)/15)

Atsakymas: $$arccos(\frac{2\cdot \sqrt {30}}{15})$$
19 uždavinys21 uždavinys