Sprendimas:
$$5\cdot sin(30)-cos(2\cdot 30)+1 = 5\cdot sin(30)-cos(60)+1 = \frac{5\cdot 1}{2}-\frac{1}{2}+1 = \frac{5}{2}+\frac{1}{2} = 3$$
Atsakymas: 3
----------------------------------------------------------
Sprendimas:
f(x) = $$5\cdot sin(x)-cos(2\cdot x)+1$$
$$cos(2\cdot x) = cos(x)^{2}-sin(x)^{2}$$
$$5\cdot sin(x)-cos(2\cdot x)+1$$ =
$$5\cdot sin(x)-(cos(x)^{2}-sin(x)^{2})+1$$ =
$$5\cdot sin(x)-cos(x)^{2}+sin(x)^{2}+1$$ =
$$5\cdot sin(x)+sin(x)^{2}+1-cos(x)^{2}$$ =
$$5\cdot sin(x)+sin(x)^{2}+sin(x)^{2}$$ =
$$5\cdot sin(x)+2\cdot sin(x)^{2}$$ =
$$2\cdot sin(x)\cdot (2.5+sin(x))$$
----------------------------------------------------------
Sprendimas:
$$sin(x) = 0$$
$$x = \pi\cdot k$$
kai k = | -2 | -1 | 0 | 1 | 2 | |
x = | -360, netinka | -180 | 0 | 180 | 360, netinka |
$$sin(x)+2.5 = 0$$
$$sin(x) = -2.5$$, šaknų nėra
Atsakymas: -180°; 0°; 180°
----------------------------------------------------------
Sprendimas:
f(-x) = $$2\cdot sin(-x)\cdot (2.5+sin((-x))) = -2\cdot sin(x)\cdot (2.5-sin(x))$$
negavome nei f(x), nei -f(x)
Atsakymas: nei lyginė, nei nelyginė