• Matematikos egzaminai
    • 2021 valstybinis
    • 2020 valstybinis
    • 2019 valstybinis
    • 2018 valstybinis
    • 2017 valstybinis
    • 2016 valstybinis
    • 2015 valstybinis
    • 2014 valstybinis
    • 2014 PUPP
    • Pasiruošk egzaminui
    • 2014 bandomasis
    • 2013 valstybinis
  • Matematikos formulės
  • Fizikos formulės
  • Įrankiai
2017 valstybinis
15 uždavinys

Sprendimas:

Rutulio tūrio formulė $$V = \frac{4}{3}\cdot \pi\cdot R^{3}$$.

Jei skersmuo tris kartus mažesnis, tai tūris yra mažesnis 33 kartus.

$$\frac{162}{3^{3}}$$ $$$$
...

2018 valstybinis
23 uždavinys

Duota funkcija f(x) = $$x^{3}-6\cdot x^{2}+8\cdot x+6$$. Tiesė y = $$k\cdot x+b$$ yra funkcijos f (x) grafiko liestinė taške x0 = 3.

1. Apskaičiuokite k ir b reikšmes.

...

2015 valstybinis
13 uždavinys

Taškas C priklauso apskritimui, kurio centras yra taškas O. Iš taško M , esančio apskritimo išorėje, nubrėžtos dvi tiesės, kurios liečia apskritimą...

2013 valstybinis
21 uždavinys

Apskaičiuokite $$\sqrt[6]{4-2\cdot \sqrt {3}}\cdot \sqrt[3]{1+\sqrt {3}}\cdot \sqrt[3]{4}$$

Sprendimas:

$$\sqrt[6]{4-2\cdot \sqrt {3}}\cdot \sqrt[3]{1+\sqrt {3}}\cdot \sqrt[3]{4}$$ $$$$

...
2021 valstybinis
16 uždavinys

Sprendimas:

Jei imtis turi modą 15, toje imtyje yra bent du skaičiai 15.

Jei keturių skaičių mediana yra 14, ir jau žinome du už ją didesnius skaičius 15...

2020 valstybinis
20 uždavinys

Sprendimas:

PELNAS = PAJAMOS - IŠLAIDOS.

Sumažinus kainą x eurų, apyrankės pardavimo kaina bus 38 - x.

Apyrankių bus parduota 10 + x.

PAJAMOS...

2013 valstybinis
18 uždavinys

Keturkampio ABCD kampas A yra status AB = 5, AD = 12, BC = CD = BD.

Apskaičiuokite keturkampio ABCD plotą.

Sprendimas.

Pagal pitagoro teoremą, [f]BD =...

2017 valstybinis
2 uždavinys

Sprendimas:

Kai narių skaičius lyginis, mediana lygi dviejų vidurinių narių vidurkiui:

$$\frac{3+x}{2}$$  = $$4$$

...
2014 valstybinis
18 uždavinys

Sprendimas.

Blokelio didesniosios sienos ilgis x, mažesniosios y.

Iš pirmo paveikslėlio gauname

h  + x = 42 + y  (1)

Iš antro paveikslėlio gauname

h  +...

2014 bandomasis
27 uždavinys

Duotas smailusis trikampis ABC.  Atkarpos AD  ir  CE  yra trikampio aukštinės.  AD  = 20, BC  = 30, o EB = 18.

1. Apskaičiuokite EC ilgį.

Sprendimas.

...

2015 valstybinis
10 uždavinys

Žinoma, kad funkcija f (x) yra lyginė, o g(x) – nelyginė. Jei f (a) = - b, g( - b) = a, kur a ≠ 0, b ≠ 0, tai g( f (- a)) + f (g(b)) lygu:

A a + b        B...

2015 valstybinis
14 uždavinys

Ritinio pagrindo apskritimo ilgis lygus 30, o ritinio aukštinės ilgis lygus 6. Apskaičiuokite šio ritinio šoninio paviršiaus plotą.

Sprendimas:

Ritinio...

2015 valstybinis
18 uždavinys

Duota funkcija g(x) = x3 - 6x2.

1. Apskaičiuokite g ' (2).

Sprendimas:

$$(x^{3}-6\cdot x^{2})'$$ $$$$
...

2014 valstybinis
15 uždavinys

Sprendimas.

Stataus trikampio ploto formulė pagal įbrėžto apskritimo spindulį $$S = r\cdot p$$

Į statųjį trikampį įbrėžto apskritimo spindulio formulė

$$r = \frac{a+b-c}{2}$$...

2020 valstybinis
12 uždavinys

Sprendimas:

Pagal sinusų teoremą

 $$\frac{2}{sin(30)} = \frac{x}{sin(45)}$$

  $$x = \frac{2\cdot sin(45)}{sin(30)}$$

  $$x = \frac{2\cdot \sqrt {2}}{2\cdot (\frac{1}{2})}$$

  $$x = \frac{\sqrt {2}}{\frac{1}{2}}$$...

2018 valstybinis
21 uždavinys

Duota funkcija f(x) = $$\frac{x^{2}\cdot log_{2}(x)-log_{2}(x)}{x-1}$$

1. Apskaičiuokite f(2).

Sprendimas:

$$\frac{x^{2}\cdot log_{2}(x)-log_{2}(x)}{x-1}$$ $$$$
...

Pasiruošk egzaminui

5 vienodo galingumo ekskavatoriai, dirbdami kartu, gali iškasti duobę per 24 valandas. Tačiau jie pradėjo dirbti vienas po kito vienodais laiko tarpais, o...

2017 valstybinis
18 uždavinys

Sprendimas:

4 % nuo paskolintos sumos yra $$\frac{600\cdot 4}{100} = 24$$ EUR.

Per 5 mėnesius jonas sumokės $$600+24\cdot 5 = 600+120 = 720$$ EUR

Atsakymas: 720 EUR

...
Pasiruošk egzaminui

Triženklio skaičiaus paskutinis skaitmuo 2. Jeigu paskutinįjį skaitmenį perkeltume į priekį, tai gautasis skaičius taptų 18 vienetų didesnis už pradinį. 
...

2013 valstybinis
2 uždavinys

Kuriame paveiksle pavaizduota didėjančioji funkcija?

Tik viename grafike - B - nėra nei horizontalių, nei vertikalių dalių.

Atsakymas: B

...
2014 bandomasis
23 uždavinys

Duotoje koordinačių sistemoje nubraižykite funkcijų f(x) = 2x ir g(x) = 1.5x + 1 grafikus.

Sprendimas:

Raskime bent po du kiekvieno grafiko taškus.

 f(x)...

2017 valstybinis
6 uždavinys

Sprendimas:

0.5 * 0.4 = 0.2

Atsakymas: A

...
2014 valstybinis
13 uždavinys

Sprendimas.

Greičio funkciją atitinka kelio funkcijos išvestinė.

$$(t^{2}+10\cdot t)'$$  = $$(2\cdot t^{2}+7\cdot t+2)'$$

...
2015 valstybinis
7 uždavinys

Su kuria x reikšme vektoriai $$\vec{a} = (x;\ \ \ \ 3)$$ ir $$\vec{b} = (-2;\ \ \ \ 6)$$ yra kolinearūs?

A - 9       B - 1       C 1       D 9

Sprendimas:

Kolinearių vektorių...

2016 valstybinis
8 uždavinys

Supakuotos trys vienodos bandelės kainavo 1 Eur. Pritaikius 40 % nuolaidą, vienos bandelės kaina yra:

A 0,1 Eur           B 0,13 Eur         C 0,2 Eur      ...

2014 PUPP
16 uždavinys

1. Pirmoje kino salėje yra 24 eilės po 25 kėdes kiekvienoje eilėje. Kiek kėdžių yra pirmoje salėje? 

Sprendimas.

 24 * 25 = 600

Atsakymas: 600

2. Antroje...

2014 valstybinis
17 uždavinys

Sprendimas.

Galimos 6 * 6 = 36 baigtys, šešiose iš jų iškrenta vienodi skaičiai, skirtingiems skaičiams lieka 36 - 6 = 30 baigčių.

Iš jų pusę kartų (15)...

2021 valstybinio matematikos egzamino sprendimai

2020 valstybinio matematikos egzamino sprendimai

2019 valstybinio matematikos egzamino sprendimai

2018 valstybinio matematikos egzamino sprendimai

2017 valstybinio matematikos egzamino sprendimai

2016 valstybinio matematikos egzamino sprendimai

2015 valstybinio matematikos egzamino sprendimai

2014 valstybinio matematikos egzamino sprendimai

2014 PUPP matematikos egzamino sprendimai

2014 valstybinio bandomojo matematikos egzamino sprendimai

2013 valstybinio matematikos egzamino sprendimai

2021 valstybinis
20 uždavinys

Sprendimas:

$$(4\cdot x^{3}-9\cdot x^{2}+6\cdot x)' = (4\cdot x^{3})'-(9\cdot x^{2})'+(6\cdot x)' = 12\cdot x^{2}-18\cdot x+6$$

Atsakymas: $$12\cdot x^{2}-18\cdot x+6$$

...

2014 bandomasis
14 uždavinys

Išspręskite lygtį $$lg(x+0.2)-1 = 0$$

Sprendimas.

$$lg(x+0.2)-1$$  = $$0$$

...
2013 valstybinis
22 uždavinys

Apskritimo su centru O spindulio ilgis lygus 1.  ∠BOC = 90

Apskritimo stygos AB ir AC yra lygios. Apskaičiuokite pilkosios dalies ABOC plotą.

Sprendimas.

...

  • Matematikos formulės
  • Trumposios daugybos formulės
  • Kvadratinės lygtys
  • Progresijos
  • Trigonometrija
  • Tikimybių teorija
  • Statistika
  • Apskritimas, skritulys
  • Trikampiai
  • Keturkampiai, daugiakampiai
  • Figūrų plotai
  • Erdvinės figūros
  • Geometrinių figūrų lygtys
  • Įvairios
  • Kombinatorika
  • Vektoriai
  • Logaritmai
  • Fizikos formulės
  • Kinematika
  • Dinamika
  • Statika
  • Tvermės dėsniai mechanikoje
  • Skysčių ir dujų slėgis
  • Molekulinė kinetika
  • Šiluminiai reiškiniai
  • Garai, skysčiai, kietoji būsena
  • Termodinamika
  • Elektrostatika
  • Nuolatinė elektros srovė
  • Magnetinis laukas
  • Elektromagnetinė indukcija
  • Elektros srovė metaluose
  • Mechaniniai svyravimai
  • Mechaninės bangos
  • Elektromagnetiniai virpesiai
  • Kintamoji elektros srovė
  • Elektromagnetinės bangos
  • Fotometrija
  • Geometrinė optika
  • Banginė optika
  • Kvantinė optika
  • Reliatyvumo teorija
  • Atomas ir atomo branduolys
Visos teisės saugomos ©